Visual Storytelling applied to educational world statistics

Mikael Jern¹, Linnea Stenliden²

¹NCVA Linköping University, Sweden e-mail: mikael.jern@liu.se
²Social and Welfare Studies, Linköping University, Sweden e-mail: linnea.stenliden@liu.se

Abstract
We present innovative visualization that focuses on the most ancient of social rituals: “storytelling” – exemplified through telling a geovisual analytics story about a region’s development over time and shape the measure of economic growth and well-being. Discoveries that more engagingly draw us into reflections about the knowledge on how life is lived and can be improved – from region to region and in addition let the reader dynamically participate in this interactive process and help advancing research critical to the dissemination of official statistics by means of web-enabled reporting tools. Geovisual analytics is a technique that can help illustrating high-dimensional statistical temporal data which for the eye are hard perceive or interpret. We introduce visual “storytelling” means for the author to import large spatio-temporal statistical data, explore and discern trends, create a story with snapshots and metadata and finally publish understandings and knowledge embedded in web page. The story guides the reader in the directions of both context and discovery through a highly engaging intuitive visual interface “vislet” based on cognitive principles and at the same time follow the analyst’s way of logical content. Value no longer relies solely on the content but also on the ability to access a better understanding of the information. In this paper we focus on the educational setting to improve the teaching in social science and increase the curiosity and learning among the younger generation for global development. We introduce our tool “Statistics eXplorer” here applied to the nations of the world based on a direct database link to the public World dataBank with 420 indicators for 1960-2009 that will help to improve citizens and in particular the young generations knowledge and understanding of a variety in national demographics, healthcare, educational, environment and economic structures and their performances over a longer time period.

Introduction
A well-educated young population is central to the social and economic well-being of regions and individuals. Education plays a key role in providing young people with the knowledge, skills and competencies needed to participate effectively in society. Official statistics is a rich and important source of information and have therefore an important role in education. Official statistics published with geovisual analytics (Andrienko, 2010) may help to improve and even change the terms and structures for learning about our society. What impacts will this have on the young generation?

Official statistics are statistics published by government agencies or other public bodies such as international organisations. They provide quantitative or qualitative information on all major areas of citizens’ lives, such as economic and social development, living conditions, health, education and the environment. Official statistics can be found on web sites of national statistical agencies such as Statistics Sweden (www.scb.se) and international organisations such as the OECD (www.oecd.org/statsportal) and the World Bank (www.worldbank.com). These massive temporal data are producing what is often called information overload. Statistics have often an unfortunate image of being boring – even though some of us know that they are in fact fascinating and exciting.

Figure 1: Seamless process from accessing data to publish knowledge and understandings on the Web.
Do teachers know about existing public statistics and its potential for a more engaging education? – Probably not sufficiently. Can they find them? – Not as easily as statisticians tend to think. And if they eventually get to them, do they actually understand them in such a way that they can use them in their educational activities? These are issues that are dealt with in this study. It concentrates on how to give our teachers innovative tools that can make national and regional statistics interactive visually understandable and useable to students.

We introduce innovative web-enabled geovisual analytics (Jern, 2010a) exemplified in our World eXplorer platform for exploring, collaborating and publishing statistics data (figure 1 and 2), facilitating storytelling aimed at producing statistical educational content in support of an automatic authoring process. The author, in this case a teacher, would simply press a button to publish the gained knowledge and understandings from the visual interactive discovery process and let the students read the teacher’s story and at the same time interact with the visualized content. We exploit our latest research focusing on the most ancient of social rituals “storytelling” - telling a story about a region’s development over time and shape the measure of economic growth and well-being. Discoveries that more engagingly draw us into reflections about the knowledge on how life is lived - and can be improved – compare nations and local regions and in addition let the student dynamically participate in this process. The effectiveness of educations rests in many ways upon educators to empower their students to become effective learners and knowledge creators, here through a “Vislet” that is embedded into a web page or blog that now becomes an interactive geoanalytics learning experience: http://www.ncomva.com/?p=978

Figure 1: World eXplorer with 3 time-linked views showing the world “fertility rates” during 1960-2008; map, scatter plot (fertility rate vs. age 0-14) and time chart; comparing 4 countries Nigeria, South Africa, China and Italy. The story is published to the right side and includes linked snapshots. Students learn that central Africa maintains a high fertility rate (Nigeria), while South Africa starts in 1960 at the same level but then has a reduced trend. The students can read the story (right GUI panel), interact and change indicators to discover reasons behind this trend and knowledge. Interact with the Vislet: http://www.ncomva.com/?page_id=297

A storytelling mechanism is initiated (figure 3) for the teacher to: 1) access statistical data from the World dataBank database through a direct API interface; 2) explore and make discoveries through trends and patterns and derive insight - gained knowledge is the foundation for 3) creating a story that can be 4) shared with colleagues and reach consensus and trust. Visual discoveries are captured into snapshots together with descriptive metadata and hyperlinks in relation to the analytics reasoning. The teacher can get feedback from colleagues then adopts the story and 5) finally publishes “tell-a-story” using a “Vislet” that is embedded in educational blogs or HTML pages providing students with an interactive visual learning experience.

With the ubiquitous availability of geovisual analytics the time has come to explore the possibilities for educators to incorporate these tools into a variety of subject courses and teaching practices (Kinzel & Wright), 2008). The potential for educators to harvest these powerful tools, to present and explore scientific data sets, ought to be offered and in focus for further investigation.
We consider interactive tools for teaching such as GIS, visualization, computer models and animations allow the educator and the student to manipulate the environment and the outcome of the learning process are effective (Solem, et al. 2009). There are research and usability testing of geovisualization tools, but there is a lack of studies of young students learning processes. A better understanding of how educators and their students can learn by and elicit better user understanding and participation by exploiting these tools is of importance. We are implementing these tools – geovisual analytics – applied in social science – to help and engage educators to communicate progress initiatives, measuring economic, social, educational, health and environmental developments to young students to:

- Examine the students’ development of knowledge and understanding by using visual analytic storytelling methods in an educational setting
- Investigate teachers experiences when using those methods
- Contribute to further development of geovisual analytics for educational purposes according to the pedagogical findings.

The study is delimited to investigate this in all public junior high schools in one municipality in Sweden. The tool will be introduced to teachers and their students (age 13 – 15 years) in social science.

Volumes of official national and sub-national statistical data are today generated by statistics offices all over the world and stored in public databases such as the World dataBank but not used as effectively as one would wish for. Research has, up to now, focused on tools that explore statistical data while methods that communicate and educate understanding and knowledge with clarity, precision, and efficiency has not achieved the same attention. Publishing official statistics through assisted content creation with emphasis on visualization and metadata represents a key advantage of our storytelling and probably has a potential to transform conditions and structures for learning.

Little focus has been given to make geovisual analytics technologies useful and accessible to educators and advance visual presentation to students. Nor has research in any greater extension yet, tried to uncover and specify factors that encourage or discourage deeper understanding or learning with multi external representational tools (MERs) like the geovisual analytics offer.

World eXplorer may promote the educator in the task to translate information to be learned into a format appropriate to the learner's current state of understanding. As far as instruction is concerned, eXplorer will support the educator to encourage the students to discover principles and consistency by themselves. The educator and students then might be supported by the tool to engage in an active dialog (i.e., Socratic learning). The content should be organized in a spiral manner so that the student continually builds upon what they have already learned. This builds upon the idea of learning as an active process in which learners communicate and
construct new ideas or concepts based upon their current/past knowledge (Vygotsky, 1986). The learner selects and transforms information, constructs hypotheses, and makes decisions, relying on a cognitive structure to do so. A cognitive structure (i.e., schema, mental models) provides meaning and organization to experiences and allows the individual to "go beyond the information given" (Bruner, 1973). In order to accomplish this, geovisual analytics must try to make connections between knowledge the learner has and the knowledge being taught. An interdisciplinary research in cognition and geovisual analytics includes therefore pressing research questions and theoretical perspectives.

System Implementation

Statistics eXplorer is based on our in-house developed component toolkit adapted for Adobe’s Flash basic graphics (Quan, 2011) and does not require installation of any other software and will run anywhere. The toolkit facilitates innovative methods from information and geographical visualization such as the choropleth map, dynamic histogram, table lens, parallel axes plot “profile plot”, scatter plot, time graph, and pie and time glyphs, flow map (trade and migration) applied and customized for statistics data. Interactive features that support a spatial analytical reasoning process are applied such as tooltips, brushing, highlight, visual inquiry and conditioned statistics filter mechanisms that help detecting outliers. Data are normally preloaded with a set of basic indicators such as demographics, economic indicators, education statistics etc. but the user can also load external data through optional database interfaces such as SDMX, PC-AXIS or other API solutions to be mixed with preloaded data.

In order to detect complex patterns it is convenient to view statistics data through a number of different visual representations simultaneously (figure 2), each of which is best suited to highlight specific features. Any filtering, highlighting or colouring made in one of the linked views is transmitted to all the others.

The conceptual data model for our Statistics eXplorer platform can be seen as a data cube with three dimensions: space, time and indicators (figure 6). The spatial dimension is represented by the regions and the indicators are various indicators (GDP growth, elderly dependency rate, etc). Time is the period or point in time to which the data refer. The general method for finding a value in the cube is by its position (space; time; indicator) or (where; when; what) and fast access time is essential for motion graphs. Space-time-indicator awareness means that the data cube can be analysed and visualized across all three dimensions simultaneously.

Statistics eXplorer performs this task by integrating and time-linking all its motion graphs: choropleth map, scatter plot, dynamic histogram, flow map, table lens, data table, glyphs, time graph, parallel axes plot and regional distribution plot.
World eXplorer applied in Education

The use of geovisual analytics (Andrienko, 2010) have in many ways revolutionized the way we are able to experience and explore our world. A primary target group for our storytelling is the educators and their students. By introducing the use of this tool in their process of learning and knowledge construction they got the opportunity to discover and take advantage of what this technology offer. Our geovisual analytics supplies possibilities for the educator to orchestrate the educational planning and teaching. The World eXplorer platform (World eXplorer, 2011) is customized from our Web-enabled GAV Flash class library (Quan, 2011), programmed in Adobe’s object-oriented language ActionScript and includes a collection of innovative geographic and information visualizations adapted to statistics data handling.

The schema shows a seamless integration of a teacher database access, authoring tool, storytelling and publishing interactive education documents for official statistics and it is based on:

- **Authoring**: data provider (spreadsheet and database); data manager; visualization methods (choropleth map, scatter plot, table lens, histogram, parallel axes plot, time graph, data table); coordinated and linked views; map layers; analytic tools (dynamic query, filter operation); regional categorization; profile plot; highlight regions; motion charts; dynamic colour scale and legend.
- **Storytelling**: snapshots capture mechanism; story editor; metadata with hyperlinks for analytical reasoning; import and export story.
- **Publisher**: Vislet (widget); select visualizations used in a Vislet (map, scatter plot histogram etc), create HTML code; embed HTML code in web pages, wikis or blogs.

The methodological concept offers the educator to:

- **Choose educational content**: According to what content the teaching deals with statistical indicators and related geographical regions (countries, counties, municipalities etc) are uploaded to the platform.
- **Use the multiple linked views** to simultaneously explore the content and highlight trends and knowledge through:
 - An interactive map: possibilities to different interactive features that support a spatial analytical reasoning process such as tooltips, brushing, highlight visual inquiry and conditioned statistics filter mechanisms.
 - A motion chart: also offer the interactive possibilities to find patterns, connection and discover outliers among the indicators as well as show time series.
 - Time series: give opportunity to dynamically show indicators development over time.
- **Produce an educational text**: the educator can express (in her own language) a descriptive text and point out important spotlights of the content/indicators or even provide questions for students.
- **Create snapshots**: in the educational text the educator is able to highlight different content and a link is created to the interactive map or motion chart.

Empirical Study at public junior in social science classes

With a major interest in studying human understanding and learning within complex technology mediated learning environments our paper builds on a number of analytical concerns and assumptions. The study has a socio-cultural perspective on learning together with perspectives on the significance of visual aspects on learning [5]. An empirical study was carried out at public junior high schools in a municipality in Sweden with altogether 100 students at the age 13 – 15 (grade 6 – 9) involved. The study is divided in different phases. In phase one the teachers were introduced to the tool and made educational plans according to the curricula, organizing the content and the task by involving use of World eXplorer and its storytelling methods for exploring demographics...
indicators during 1960-2009. This means that educational Vislets were produced based on indicators from the World dataBank and published in their own educational blogs on the internet. In phase two the students worked with the interactive Vislets reading the stories and interacted with a map and scatter plot (figure 2). The teachers were first introduced to the tool; they made educational plans according to the curricula, organized the content and the tasks by involving use of the World eXplorer platform.

Our case study is interdisciplinary and builds upon two different main research areas “technological development of the geovisual analytics tool” and the “educational context of students learning process” when using this tool. Within the later context a Usability Study was carried out to examine the effectiveness, efficiency and user satisfaction. The results show that the storytelling methods are usable within the school. The tool seems to be exiting, understandable and useful even for young students. It is efficient to students, it support their searching and the apprehension of connections between different kinds of statistical indicators. The user satisfaction among students was extensive at least used as brand new tool – the long lasting effects are however unknown (Stenliden & Jern, 2010). The following tasks were investigated:

- How do conceptual and perceptual factors interact in learning with different representations?
- How does learning differ with presented or constructed representations?
- What are the costs and benefits of learning with interactive or dynamic representations?
- What are the conditions under which learning is enhanced by combining textual and graphical representations?

Our case study is interdisciplinary and builds upon two different main research areas “technological development of the geovisual analytics tool” and the “educational context of students learning process” when using this tool. Within the later context a Usability Study was carried out to examine the effectiveness, efficiency and user satisfaction. The results show that the storytelling methods are usable within the school. The tool seems to be exiting, understandable and useful even for young students. It is efficient to students, it support their searching and the apprehension of connections between different kinds of statistical indicators. The user satisfaction among students was extensive at least used as brand new tool – the long lasting effects are however unknown (Stenliden & Jern, 2010). The following tasks were investigated:

- How do conceptual and perceptual factors interact in learning with different representations?
- How does learning differ with presented or constructed representations?
- What are the costs and benefits of learning with interactive or dynamic representations?
- What are the conditions under which learning is enhanced by combining textual and graphical representations?

Our case study is interdisciplinary and builds upon two different main research areas “technological development of the geovisual analytics tool” and the “educational context of students learning process” when using this tool. Within the later context a Usability Study was carried out to examine the effectiveness, efficiency and user satisfaction. The results show that the storytelling methods are usable within the school. The tool seems to be exiting, understandable and useful even for young students. It is efficient to students, it support their searching and the apprehension of connections between different kinds of statistical indicators. The user satisfaction among students was extensive at least used as brand new tool – the long lasting effects are however unknown (Stenliden & Jern, 2010). The following tasks were investigated:

- How do conceptual and perceptual factors interact in learning with different representations?
- How does learning differ with presented or constructed representations?
- What are the costs and benefits of learning with interactive or dynamic representations?
- What are the conditions under which learning is enhanced by combining textual and graphical representations?

Our case study is interdisciplinary and builds upon two different main research areas “technological development of the geovisual analytics tool” and the “educational context of students learning process” when using this tool. Within the later context a Usability Study was carried out to examine the effectiveness, efficiency and user satisfaction. The results show that the storytelling methods are usable within the school. The tool seems to be exiting, understandable and useful even for young students. It is efficient to students, it support their searching and the apprehension of connections between different kinds of statistical indicators. The user satisfaction among students was extensive at least used as brand new tool – the long lasting effects are however unknown (Stenliden & Jern, 2010). The following tasks were investigated:

- How do conceptual and perceptual factors interact in learning with different representations?
- How does learning differ with presented or constructed representations?
- What are the costs and benefits of learning with interactive or dynamic representations?
- What are the conditions under which learning is enhanced by combining textual and graphical representations?

Conclusion

Within an international perspective our research builds on collaborating work with OECD since 2008 and we have supplied advanced and innovative statistics geovisual analytics technology to this organization http://stats.oecd.org/OECDRegionalstatistics/. We have also been involved in the development of the PISA2009 profiles: http://stats.oecd.org/PISA2009Profiles/# and Vislet at: http://www.ncomva.com/?page_id=873. The national Italian bureau ISTAT provides another very interesting and sophisticated learning material http://noi.italia.istat.it/ produced with our Statistics Publisher about the development and progress in Italian regions in
Another user is the European Commission that have used Europe eXplorer for internal analysis of data from Eurostat. The research concerning the learning perspective as presented in this study is highly requested from the international research field of learning and instruction (for example European Association Research of Learning and Instruction). The special interest group (SIG2) of comprehension of text and graphics inside this research field, focuses on how learning is influenced by the form of representation that learners study. Focus has historically been on text and picture comprehension but given the explosion of representations made available since the introduction of graphical interfaces, the field now considers all forms of representation including but not limited to, text, pictures, graphs, diagrams, concept maps, animations, equations, virtual reality, information and scientific visualization, haptics, multimedia, hypermedia, and simulations. Research on learning, when using these aids, is essential. There is research of learning with multimedia environments in different experimental studies but there is hardly any research done of this in real school contexts i.e. in a socio cultural perspective. In Sweden there are hardly any studies considering didactic within social science education in schools.

All together the results of this study will give valuable contributions to the development of these research fields. The geovisual analytics technique introduced in this paper allows the teacher to communicate with student through interesting and important discoveries captured into snapshots together with descriptive text. Selected indicators and visual representations can be published together with their metadata, thus facilitating the comprehension of statistical information for educational purpose. We believe that this innovative storytelling technology can be useful for a next-generation educational dynamic book for learning about different phenomena in the world, as examples demonstrated in this paper. At the same time, the Vislet technique help developing agile on-line educational publications, which draw the attention on recent trends and inequalities.

The educational World eXplorer presented in this paper can be evaluated at: http://www.ncomva.se/flash/explorer/wbapi/ #.

Figure 8: Example of two Vislets 1) ISTAT – the Italian national statistical bureau http://noi-italia.istat.it/ has developed this innovative web site Statistics Publisher providing an interesting example of a sophisticated learning material. 2) Exploring ageing population in Europe 1990-2008: http://visletblog.blogspot.com/2011/02/ageing-population-in-europe-1990-2009.html.
Acknowledgements

This research and case studies were carried out by NCVA in close collaboration with OECD and Statistics Sweden who supplied data and comprehensive evaluation of the statistical storytelling system. The research is in part supported by funding from the Swedish Agency for Innovation Systems (VINNOVA), the “Visualization Program” and the “National Graduate School of Childhood, Learning and Didactics” both coordinated by the Swedish Knowledge Foundation. The authors thank the entire research team at NCVA, Linkoping University for valuable contributions, but also to the teachers contributing and the students participating in this study.

References

World eXplorer: http://ncomva.com 2011